利用最小二乘支持向量机良好的分类和函数估计能力,提出了一种新的模糊时序分析方法.该方法包括两部分:在模糊时序处理部分通过建立启发式规则、模糊变量、论域、模糊集合和隶属度函数,完成历史数据的模糊化;最小二乘支持向量机处理部分替代传统的模糊关系计算,对模糊化的历史数据进行分析,然后去模糊化得到最后的预测结果.与多种传统模糊时序分析方法的对比试验表明,该方法充分利用了支持向量机较好的推广性能等优点,具有更高的精度和较好的泛化效果.