摘要
为解决卷积特征目标跟踪算法精确度和速度相互制约的问题,文中提出了一种基于峰值旁瓣比的自适应位置切换的相关滤波目标跟踪算法。将Pool4和Conv5-3层作为特征提取层,通过特征能量均值比获取有效的卷积特征,提高算法的速度;然后利用不同样本分布训练多个相关滤波器,并根据峰值旁瓣比筛选出最适分类器进行位置预测,提高了跟踪器的泛化能力;最后利用稀疏模型更新策略更新滤波器模板,减小过拟合现象的同时进一步提高算法的速度。在OTB100标准数据集上测试该算法,实验结果表明,文中所提算法的精确度为88.8%,较原分层卷积跟踪算法提高了6.1%;跟踪速度为47.5帧/s,是原算法的5倍,显示了良好的实时性能。
- 单位