摘要
在可分实Hilbert空间考虑一类随机积分微分方程在伪概周期环境下解的存在唯一性问题.基于不动点原理和随机分析技巧,给出了方程存在唯一伪概周期解的一组充分条件.研究表明,如果方程预解算子族指数稳定,即使时滞是无界单调不减函数,在适当的条件下,方程依然存在唯一伪概周期解.最后,给出实例加以验证.
- 单位
在可分实Hilbert空间考虑一类随机积分微分方程在伪概周期环境下解的存在唯一性问题.基于不动点原理和随机分析技巧,给出了方程存在唯一伪概周期解的一组充分条件.研究表明,如果方程预解算子族指数稳定,即使时滞是无界单调不减函数,在适当的条件下,方程依然存在唯一伪概周期解.最后,给出实例加以验证.