摘要
较低的网络服务响应时间对提升用户体验至关重要. 以搜索引擎这一典型的网络服务场景为例,服务提供商应确保网络服务(搜索)响应时间在1s以内. 在实践中,服务响应时间会受到用户浏览器、运营商、页面加载方式等诸多服务属性的影响. 为了进行针对性的优化,服务提供商需要找出使服务响应时间过长的规则,即一些属性的组合. 然而现有研究工作遇到了3方面的挑战:第一,搜索日志数据量大;第二,搜索日志数据分布不平衡;第三,要求泛化度高的规则. 因此本工作设计了Miner(multi-dimensional extraction of rules),一种新型服务响应时间异常诊断框架. Miner使用自步采样机制应对第1个和第2个挑战. 针对第3个挑战,Miner使用Corels算法挖掘出泛化率高且召回率高的规则. 使用2家国内顶级搜索引擎服务提供商的响应时间日志数据评估了Miner性能,结果显示Miner的泛化率和召回率均高于现有方法,并证明了Miner挖掘出的规则可被运维人员采纳及做针对性的优化.
- 单位