摘要
低Reynolds数下层流分离和分离诱导转捩现象复杂,数值仿真难度大。基于全连接反向传播神经网络,建立了低Reynolds数转捩间歇因子的数据驱动模型,通过优化设计选择了能够反映转捩过程的数据驱动模型的流场输入参数,辨识了转捩间歇因子,据此修正了k-ω SST二方程湍流模型,求解二维翼型动态失速下的流场演化和非定常气动力特性。结果表明,数据驱动的转捩方程耦合二方程湍流模型具有一定的迎角泛化能力,能够反映动态失速下前缘涡增长与脱落、流动再附着等典型流动状态。基于数据驱动转捩模型的动态失速下非定常气动升力预测结果与基于SST-γ三方程模型的CFD计算结果相比,相对误差小于12%。
- 单位