摘要
为解决复杂约束环境下大规模无人战斗机(UCAV)编队队形优化问题,提出基于双层规划模型的队形优化求解算法.以大规模UCAV编队空对地饱和打击作战场景为例,建立UCAV编队作战上层规划模型,通过采用离散粒子群-模拟退火(DPSO-SA)算法进行求解,得到执行每个任务的UCAV编号和最优队形;根据现有的编队作战队形库,建立编队中UCAV站位下层规划模型,通过采用遗传算法进行求解,得到UCAV在队形中的位置.仿真结果表明:在上层规划模型中引入改进模拟退火算法,可以解决离散粒子群算法易陷入局部极小值的问题;设计双层规划模型,可以解决DPSO-SA算法后期收敛速度慢的问题.相对于单层规划模型,双层规划模型求解大规模UCAV编队队形优化问题收敛速度更快,寻优效果更好.
- 单位