摘要
传统网络架构部署下的边缘服务器难以满足大规模用户设备的接入和通信质量要求。为增加网络容量,提高频谱利用率,通过密集化基站的部署,构建一种面向超密集边缘计算网络的任务卸载优化模型。面对信道状态的变化、移动设备的动态需求以及服务器和频谱资源的有限性对任务卸载带来的挑战,结合任务类型和服务器的计算能力,并考虑信道状态变化、移动设备的动态需求以及干扰约束对卸载策略的影响,提出一种基于自适应模拟退火遗传(AGASA)算法的任务卸载方法,在满足任务截止期限的同时,对任务卸载能耗进行优化。同时,为得到最优上传功率,采用黄金分割算法解决功率控制问题,从而降低传输能耗。实验结果表明,AGASA算法在信道状态变化时可保证通信质量和计算效率,相比混合遗传粒子群算法,能够在满足截止期约束的同时使卸载能耗降低15.56%。
-
单位福建师范大学协和学院; 福建师范大学