摘要
于2017年1月1日—12月31日对南京市城区大气细粒子(PM2.5)化学组分(元素、水溶性离子和碳质组分)的小时质量浓度进行连续观测,采用正矩阵因子分析(Positive Matrix Factorization,PMF)模型分别基于全年观测数据(PMF全年)和逐月观测数据(PMF月份)进行源解析,比较不同观测周期源解析结果的差异以及对PM2.5各组分浓度估算的准确性.结果表明:不同观测周期下,PMF源解析结果中因子类型未发生改变,但因子组成和贡献分布存在较大差异.由于PMF模型假设同一观测周期内源成分谱不发生变化,只有基于逐月观测数据的PMF源解析才能体现全年范围内因子组成和贡献分布的变化.尽管PMF全年和PMF月份的分析结果均能准确估算PM2.5组分的月均浓度,但PMF月份结果对各组分小时浓度的估算值和观测值在时间变化上更一致.这是因为PMF模型要求对各组分浓度的平均值进行拟合,易低估(或高估)PM2.5组分在观测周期内的极大(或极小)值.因此,基于短期(例如,月份)高分辨观测数据的PMF分析能改进对PM2.5组分浓度时间变化的模拟.
-
单位环境科学与工程学院; 南京信息工程大学