针对动态环境下的移动机器人最优路径问题,利用栅格法建模,提出1种改进蚁群算法。通过调整信息素启发因子和期望启发因子,自适应改变挥发系数。在路径规划时,提出相应的动态路径规划避障策略,使机器人在避障的同时得到最优或次优路径。实验结果表明,当机器人陷入凹型障碍并且在复杂环境搜索效率低的情况下,该文算法经过25代收敛找到最短路径;改进算法比基本蚁群算法进化代数减少近50代,同时能有效避免移动机器人和动态障碍物碰撞,并且获得15.656的无碰路径。