摘要
研究股票价格准确预测问题,由于股票价格数据具非线性、随机性等变化规律,同时股票市场与国内外经济政治变化有关,传统股票价格预测方法只能对其线性变化规律进行准确预测,无法反映股票价格非线性部分进行有效建模,导致股价预测精度不高。为了提高股票价格预测精度,提出了一种遗传优化BP神经网络的股票价格预测模型。充分利用BP神经网络良好的非线性映射能力,对股票价格变化规律进行建模,并通过遗传算法对BP神经网络模型参数进行优化,从而获最优股票价格最优预测模型。实验结果表明,相对于传统股票价格预测模型,遗传算法优化BP神经网络的股票价格预测模型拟合程度更好,预测精度更高,为股票价格预测提供了依据。
-
单位河南财经政法大学