摘要

本发明公开的一种基于降噪算法的改进Elman神经网络的预测方法。该预测方法包括:S1、将原始数据按比例划分为训练集、测试集以及验证集;S2、对原始数据采用降噪算法CPW进行降噪,降噪算法CPW通过将原始数据中的不同维度的数据使用CEEMDAN进行分解后结合排列熵使用小波变换对分解出来的IMF进行降噪,然后将经过了降噪处理的序列重构为降噪后的时间序列;S3、构建结合了注意力机制的EAMC神经网络;S4、将降噪后训练集的数据放入神经网络中进行训练,待损失值小于给定的阈值以后,保存训练好的神经网络,结束训练;S5、将待测样本输入经过训练后得到的神经网络中,获得预测结果,可以提高预测的精度。