分数阶微积分理论在空气动力学、复杂介质电动力学、控制理论、信号与图像处理、流变学等诸多问题上显示出独特优势,其理论和应用的研究已成为一个热点,研究分数阶微分方程及其边值问题为上述问题提供了重要的理论依据;考虑一类带有积分边界条件的分数阶微分方程的边值问题,首先应用分数阶微积分的有关结论得到了线性分数阶微分方程边值问题解的表达式,获得了相应的格林函数及其性质,给出格林函数的一个新的上界的估计;再利用Schauder不动点定理,得到了此边值问题的正解存在性结果.