摘要
针对传统电压暂降源识别方法分类时间长、准确率不高等问题,提出了一种基于广义S变换(GST)和遗传算法(GA)优化极限学习机(ELM)的电压暂降源识别方法。先利用广义S变换的模时频矩阵有效提取出电压暂降的起止时刻、暂降深度、相位跳变等特征量,再采用遗传算法优化ELM的输入权值和隐含层阈值,构建基于GA-ELM的电压暂降源识别模型,实现对电压暂降源的识别。通过MATLAB/SIMULINK仿真,对比GA-ELM、ELM、BP神经网络对电压暂降源的识别结果,验证了采用GA-ELM的电压暂降源识别的准确率要高于采用原始ELM和BP神经网络。
-
单位自动化学院; 河南理工大学