摘要

为了提升关系网络图像分类的准确度,在网络中引入多尺度通道注意力机制,提出了一种新的小样本图像分类算法。由于多尺度通道注意力机制能够关注样本特征空间的重要信息,该方法能够提取图像更丰富的多尺度特征,并通过关系度量,改善了分类结果。实验结果表明,在MiniImageNet和Omniglot数据集上,该算法对图像分类精度有明显的提高。