摘要

在搜救领域中,透过程序完成半自主或自主飞行控制,无人机能够协助救难人员更好地完成救援任务。搜救任务中涉及到多个目标间的搜索,相比于单目标的搜索问题,需要更复杂的算法或是奖励重塑形式,才能改进其稀疏奖励的问题。此外,搜救任务比起一般的强化学习问题,更讲究时效性。如何利用搜救的先验知识对算法进行改进,从而提高完成任务的效率和训练时间,是机器学习应用的研究重点。针对搜救任务背景,研究了无人机在多目标问题下的路径规划问题。基于分层学习的概念对已有的深度强化学习算法进行了改进,提出了适用于多目标任务的深度强化学习算法——MTDDPG。该算法结合环境分区和奖励重塑,利用环境分区对搜救场景进行简化,从而缩短训练时间,再通过奖励重塑的方式提升任务完成的效率,提升了MTDDPG算法在多目标搜救任务上的训练速度和效率。利用程序仿真设计三个实验对算法进行验证,并基于不同的先验信息对环境进行建模实验,对比不同算法在多目标任务中的实验结果。此外,根据先验信息的完整与否,对比MTDDPG在不同先验信息完整度的场景下训练的结果,结果表明MTDDPG在多目标搜救任务上,可以有效地解决搜索问题,完成指定的搜救任务。