摘要
在图像被大噪声污染或具有较低分辨率时,传统的偏微分方程(PDE)模型的稳态解会产生明显的阶梯效应,恢复图像质量较差。针对此缺点,提出了一种新的基于K-奇异值分解(K-SVD)的PDE图像恢复方法,并应用于毫米波(MMW)图像的恢复。K-SVD是一种图像稀疏表示方法,对图像进行稀疏估计的同时实现去噪,对噪声方差较大的图像具有较好的去噪鲁棒性。首先采用K-SVD对MMW图像进行去噪,对去噪图像再应用全变分(TV)模型的PDE方法进行恢复。对所提出的算法分别使用模拟的MMW图像和真实的MMW图像进行测试,并进一步和K-SVD、PDE方法比较,同时使用峰值信噪比(PSNR)对恢复图像进行评价。根据不同...
- 单位