摘要

粮食安全是最根本的民生问题,云、雾等自然因素是影响遥感种植监测的主要因素之一,因此获取精准、高效的耕地种植监测信息对保障当地粮农安全、粮食估产及面积估算具有重要意义。在利用多时相植被指数(Multi-period Vegetation Index,以下简称植被MVI)合成模型的构建、农作物特征与耕地信息的可分离性两方面对高原山地农作物耕地面积提取的研究较少。该研究基于哨兵2(Sentinel-2)数据,构建了多时相植被指数合成模型,估算了2020—2021年归一化差异植被指数(Normalize Difference Vegetation Index,以下简称植被NDVI)、增强植被指数(Enhanced Vegetation Index,以下简称植被EVI)和红绿叶绿素植被指数(Red-Edge ChlorophyII Vegetation Index,以下简称植被RECI)3种植被指数的提取结果,研究了预测模型与高原山地农作物的相关性,探讨了不同植被指数模型对农作物的识别精度。结果表明:(1)多时相植被NDVI模型相较植被EVI和植被RECI对冬小麦面积提取精度更高,与云南高原山地冬小麦相关性最强,用户精度约为93.28%;(2)利用三期NDVI组合与2期植被NDVI组合均可对冬小麦精准提取,但3期植被NDVI模型提取精度更高。利用多时相植被NDVI模型对冬小麦种植面积的精准预测,证明了该模型可有效适用于云南高原山地冬小麦,并为当地冬小麦面积的预测提供了数据支撑。

全文