光伏发电受到光照强度、环境温度和湿度等多方因素影响与制约,具有波动性、间歇性、不确定性以及能量密度低等特征,并网后会对电网造成一定程度的冲击。因此,准确预测光伏输出功率对于维护电网安全稳定运行、电网调度合理化和降低电网运行经济成本均具有重要意义。文中采用随机森林、自适应神经模糊推理算法以及粒子群优化算法进行数据训练和模型优化,搭建了一种超短期光伏发电功率预测的组合模型。通过内蒙古地区某光伏发电站的实际输出功率与RF-ANFIS-PSO模型预测结果比对,验证了其准确性和有效性。