摘要
针对滚动轴承运行工况复杂多变,难以诊断的问题,提出一种基于短时傅里叶的同步压缩变换(FSST)与残差神经网络(ResNet)相结合的故障诊断方法。该方法对轴承振动信号做短时傅里叶变换后,将时频系数压缩重排,生成基于FSST时频图在3种变工况下的训练集和测试集。考虑到深度模型的网络退化问题,采用ResNet模型对数据集进行时频特征提取和故障诊断,进一步提升轴承故障诊断的精度。通过3种变工况实验证明了该方法的有效性和可行性,平均诊断准确率高达98.9%,与其他方法相比,诊断精度有较大提高。
- 单位