摘要

水电机组的轴心轨迹能够反映机组不同的运行状态,为了提高轴心轨迹的识别率,准确判断机组运行状态,本文提出方向梯度直方图(Histogram of Oriented Gradient, HOG)结合由瞬态搜索优化(Transient Search Optimization, TSO)算法优化的支持向量机(Support Vector Machine, SVM)的方法。将轴心轨迹信号经改进小波阈值方法去噪后,生成轴心轨迹图像,之后提取图像HOG特征,经主成分分析(Principal Components Analysis, PCA)降维处理后,利用TSO-SVM对降维后的特征进行分类识别。结果表明所提方法能够很好地识别不同状态的轴心轨迹,具有识别准确率高和识别速度快的特点。