摘要

雾是户外图像降质的主要因素之一,图像去雾旨在恢复有雾图像中的内容。基于图像底层特征和先验知识的传统算法去雾效果不稳定。针对以上问题,受深度学习理论的启发,提出一种端到端的两阶段去雾深度神经网络算法。将图像去雾和图像超分辨率重建相结合,先利用编码器-解码器预测低分辨率雾霾残留图像,再利用亚像素卷积和残差块重建出原始分辨率雾霾残留图像,最后预测出原始分辨率无雾图像。在合成和真实有雾图像上的实验表明,该算法在定量评价和定性评价中均优于对比算法。

  • 单位
    福建信息职业技术学院; 闽江学院