摘要

火灾的发生具有不确定性,传统线性模型难对该类典型非线性预测问题进行准确预测.为了提高火灾的预测准确性,提出一种蚁群算法(ACO)优化LSSVM的非线性火灾预测算法(ACO-LSSVM).首先收集火灾发生的历史数据,然后输入LSSVM进行训练,ACO对LSSVM进行动态优化,描述火灾发生的不确定性,从而建立一种非线性火灾预测模型.仿真结果表明:ACO-LSSVM解决了传统火灾预测算法存在的缺陷,提高了火灾的预测精度,准确地刻画了火灾的复杂性、非线性变化的特点.

  • 单位
    周口师范学院

全文