摘要

针对X光图像下钢管焊缝缺陷对比度弱﹑缺陷尺寸大小不一﹑同类缺陷形状变化大等因素导致的缺陷检测率不高的问题,提出一种改进YOLOv5的焊缝缺陷检测算法。首先,对X光图像进行去模糊处理,获得较清晰的焊缝图像;其次,在YOLOv5的主干网络中引入动态区域感知卷积代替标准卷积,保证参数不增加的情况下,增强特征提取能力;进一步针对YOLOv5中CSP特征金字塔融合准则过于简单的问题,采用了一种高效的特征融合机制以增强特征表达能力;最后,在检测头部分引入可学习权重参数,实现检测头中的特征自适应融合。实验结果表明,与传统YOLOv5算法相比,虽然检测速度从32.2 fps降到27.5 fps,但是检测的mAP提高了3.3%,达到94.6%,初步满足实际生产中钢管焊缝缺陷自动检测需求。

全文