摘要
针对自然场景中马拉松运动员号码簿的扭曲形变与多目标混合等复杂情况,提出一种基于改进RetinaNet的号码簿检测网络模型,以提高号码簿检测精度。该模型以RetinaNet为基础网络结构,在原有候选框生成策略中引入角度参数,通过生成不同角度、大小的候选框来匹配水平及倾斜目标。模型中针对旋转检测框在角度回归中引起的边界问题,采用环形平滑标签方法将角度回归问题转化为分类问题,通过对窗口函数及窗口半径的设置,使得目标区域定位更精确。实验结果表明,在收集到的真实马拉松数据集上,相比原始RetinaNet,改进后的模型在简单及复杂背景下的检测精度均有所提升。在相同数据标注的条件下,与具有多角度的文本检测模型CTPN、EAST模型相比,改进后模型对于倾斜号码簿的检测性能更优。
- 单位