摘要
对微博文本的向量化表达及摘要效果的评测问题进行了研究.引入Word2vec模型实现微博文本词语的向量化表达,进而对词向量聚类生成主题词类.计算微博文本到主题词类的隶属度,结合主题词类的权重,生成微博文本的加权主题分布表达.在此基础上划分类簇实现摘要句的提取.基于类簇H指数选出高频词作为标准摘要词集,考察了生成摘要与标准摘要词集中共现词的词频分布,实现对自动摘要效果的评测.实验结果表明,本文提出的方法有助于提升微博短文本集的摘要生成效果.
-
单位同方知网(北京)技术有限公司; 东北林业大学; 同方知网(北京)技术有限公司