摘要
基于大坝变形量与多影响因素复杂非线性关系问题,提出了基于遗传算法优化BP神经网络的AdaBoost强预测模型(GA-BP-AdaBoost)。算例分析表明,该强预测模型融合了遗传算法全局优化和BP神经网络的局部寻优的特点,同时AdaBoost强预测器通过给弱预测器的预测序列赋予不同的权重,综合不同预测序列的精度优势,实现了AdaBoost强预测器"优中选优"的目的,最大限度地提高了预测精度,验证了本文基于遗传算法优化BP神经网络的AdaBoost强预测模型在大坝变形监测中的可行性和实用性。
-
单位广西空间信息与测绘重点实验室; 广西建设职业技术学院; 桂林理工大学