摘要
针对云制造平台海量多样的服务资源分类界限模糊的问题,分析了云服务和制造资源之间的关系,提出云制造下混合式资源服务聚集模型。此外,文章基于k-means聚类算法建立了聚类有效性评估函数;针对k-means聚类算法对初始聚簇中心敏感易陷入局部最优的缺点,引入蛙跳算法确定初始聚簇中心,利用反向解扩大初始蛙群的搜索范围,结合最优解均值改进族群最差蛙的优化,提高族群的信息共享能力,结合改进后的蛙跳算法和k-means迭代,提出一种基于蛙跳算法改进的k-means聚类算法。最后,以两种数据集和云平台上同类机床资源为例,验证了所提聚类算法的有效性和可行性。
-
单位机电工程学院; 河海大学