摘要
为确保数据的定量化应用,国际航天遥感大国始终围绕定标技术开展研究,定标精度不断提高。在经历数十年发展之后,受传统的遥感载荷定标系统设计以及地面辐射校正技术理论极限的制约,目前遥感卫星辐射定标停留在太阳反射谱段2%,红外谱段0.2 K的不确定性水平,其精度难以继续提高。进入21世纪,气候变化问题成为全球关注的热点,全球气候变化研究对遥感卫星辐射测量精度提出了前所未有的要求。ASIC3(Achieving Satellite Instrument Calibration for Climate Change)报告指出,为了有效检测全球气候变化信号,准确预测气候变化,遥感卫星观测必须长期保持在太阳反射谱段0.3%、红外谱段0.1 K,太阳总辐射0.01%的不确定性水平。为了迎接这一挑战,欧洲和美国相继提出了CLARREO计划和TRUTHS计划,试图通过发射具有超高辐射测量精度的基准卫星,在监测气候变化信号的同时,标定其他遥感卫星,提升全球遥感卫星整体定标精度。同期,中国也提出了空间辐射测量基准技术的概念,并在"十二五"和"十三五",通过国家高技术研究发展计划和国家重点研发计划持续支持星上相变固定点黑体、空间低温辐射计等尖端技术的研发,进而逐渐形成发射空间辐射测量基准卫星的路线图。从目前发展态势上看,中国有可能成为第一个建立空间辐射测量基准的国家,率先实现卫星平台辐射观测直接向国际单位(SI)的溯源。
-
单位中国科学院上海技术物理研究所; 中国科学院地理科学与资源研究所; 中国科学院大气物理研究所; 武汉大学; 中国科学院安徽光学精密机械研究所; 中国科学院,安徽光学精密机械研究所; 清华大学; 中国科学院长春光学精密机械与物理研究所; 北京航空航天大学; 国家卫星气象中心; 国家卫星海洋应用中心