摘要
提高红外目标模拟器校准数据的拟合精度,对于红外目标的辐射照度等辐射特性的测量有着重要意义;针对校准数据具有很强的非线性,传统的拟合算法精度不高的问题,引入一种基于粒子群算法优化的极限学习机算法(PSO-ELM),以标准黑体辐射温度作为输入因子,以MCT探测器实际测量出的辐射照度作为输出因子,建立PSO-ELM模型,利用粒子群算法(PSO)对连接隐藏神经元和输入层的权值和隐藏神经元阈值进行优化,拟合出输入参数和输出参数之间的非线性关系;这两个参数的优化提高了极限学习机算法(ELM)的性能,该方法的主要优点是具有较强的容错性、较好的对复杂非线性数据处理性能和ELM算法参数设置上的优化机制;通过与GA-ELM模型、ELM模型进行对,验证了与传统数据拟合方法相比,基于PSO-ELM的方法拟合精度有了很大提高,为红外目标模拟器校准数据拟合提供了新的方法。