混沌时间序列的频谱状态丰富,能在不同状态下反映信号的激励特性,所以常用作预测建模的测量序列.传统的混沌时间序列的结构选择往往依赖于经验,无法充分反映混沌系统的特性,容易导致模型的推广范围较窄.针对以上问题,提出了一种基于RBF网络的Mackey-Glass与Lorenz混沌时间序列预测模型,利用模型结构选择方法来充分反映混沌系统的时序特性,并通过模型优化等策略提高模型的泛化能力.结果表明,模型结构选择方法能有效提高混沌时间序列的预测精度,具有良好的应用前景.