摘要

鲁棒主成分分析作为统计与数据科学领域的基本工具已被广泛研究,其核心原理是把观测数据分解成低秩部分和稀疏部分.本文基于鲁棒主成分分析的非凸模型,提出了一种新的基于梯度方法和非单调搜索技术的高斯型交替下降方向法.在新算法中,交替更新低秩部分和稀疏部分相关的变量,其中低秩部分的变量是利用一步带有精确步长的梯度下降法进行更新,稀疏部分的变量是采用非单调搜索技术进行更新.本文在一定的条件下建立了新算法的全局收敛理论.最后的数值试验结果表明了新算法的有效性.