摘要

为实现对索驱末端效应器运动状态的自适应估计,基于注意力双向门控循环神经网络,提出了一种数据驱动的末端效应器运动估计方法.首先进行数据构建,以获取短时序列作为训练样本.然后,将数据输入包含带自注意力模块的双向门控循环神经网络,构造样本的序列模型.最后,在索驱末端效应器运动数据集上,将电机位置、速度以及作为系统控制信号的输入时间序列作为样本特征,进行运动估计性能对比实验.结果表明,相比常用的序列建模回归算法,所提方法能够取得更好的末端效应器运动估计性能,因而能有效实现复杂条件下对索驱末端效应器的运动估计.