摘要
近年来基于深度卷积神经网络的目标检测算法已经成为了主流,Faster R-CNN就是一种主流的目标检测算法。在Faster R-CNN卷积神经网络的基础上,使用DIoU来评价预测框和真实框的距离。针对Faster R-CNN小目标检测效果不好的缺陷,将原算法中的候选区域池化RoI Pooling改进为检测更为精确的区域特征聚集方式RoI Align。此外还改进了原算法中锚框的非极大值抑制方法,增加了算法的平均检测率。最后在公开数据集MS COCO、PASCAL VOC 2007、PASCAL VOC 2012上进行对比训练,在PASCAL VOC 2007测试集上进行验证。实验结果表明改进后的目标检测算法能够有效提高原Faster R-CNN算法的目标检测率。
- 单位