摘要

针对局部可观测多智能体学习环境下,智能体与环境频繁交互造成环境不稳定,导致智能体无法使用经验回放机制(experience replay)的问题,采用了一种基于异环境重要性采样的回放经验利用机制。并结合该机制再深度强化学习算法,深度分布式循环Q网络(DDRQN)基础上进行了改进,提出一种增强型的深度分布式循环Q网络。通过对Deep Mind的Py SC2平台Defeat Roaches局部可观测多智能体学习环境实验结果对比分析表明,增强型的深度分布式循环Q网络相比于DDRQN网络,具有良好的学习性能,稳定性、收敛速度均具有显著提升。