摘要
针对船用往复式二级空压机振动信号非线性、非平稳性问题,利用振动信号辨识故障,综合集成经验模态分解(ensemble empirical mode decomposition, EEMD)和支持向量机(support vector machine, SVM)的信号处理优势,提出一种将EEMD能量熵和奇异值熵与SVM融合的船用空压机故障诊断方法。模拟正常状态和4种故障状态进行故障诊断实验。采集的振动信号用小波降噪法进行处理。为模拟船用空压机实际工作环境,在EEMD处理过程中加入加性高斯白噪声(信噪比7.5 dB)。以相关性为评价指标选取各状态下本征模态函数(intrinsic mode function, IMF),并以每个IMF的能量熵和奇异值熵作为特征值,采用SVM分类器识别故障。实验表明:与基于经验模态分解(empirical mode decomposition, EMD)和SVM等故障诊断方法相比,该方法能更有效地识别故障。该方法在实船应用中获得较好的诊断效果,可为现代船舶智能故障诊断研究提供参考。
- 单位