摘要

目的:在采集、处理和传输过程中,医学图像会存在各种噪声,严重影响医学图像的质量和后续对图像的各种处理,因此医学图像去噪具有重要意义。同时医学图像数据量大,去噪处理算法复杂,在一般个人电脑上进行医学图像去噪仍是一个非常耗时的过程,很难满足实际应用中高实时性的要求,因此需要通过优化来提高去噪的处理速度。方法:本文利用CUDA(Compute Unified Device Architecture)并行编程对基于同质算法的三维医学图像去噪进行加速,CPU和GPU(Graphic Processor Unit)异构编程方式能发挥GPU高强度的计算能力,提高算法的执行速度。通过使用纹理存储器将图像数据与...