摘要
为了提高多故障诊断中对新故障类别和新故障数据的适应性,提出了一种新的多故障诊断动态模型.该模型采用支持向量域描述算法(SVDD)对多类故障进行单独训练,建立独立而封闭的特征空间,满足故障类别的动态增加需要,并采用样本与各特征空间的相对距离进行了多故障的混合识别.应用在线SVDD算法,在已有的故障特征分布信息基础上,通过更新操作,学习新数据信息,从而实现了故障模式的动态调整.通过仿真和机械故障实例数据的检验,表明该模型能够动态地提取多类故障的特征信息,改善诊断学习过程的适应性.
-
单位西安交通大学机械制造系统工程国家重点实验室; 西安交通大学