摘要
针对过程数据的多模态和非线性的特征,提出了改进的局部近邻标准化和PPA结合的过程故障检测方法。首先寻找每个样本的第一近邻样本,再寻找第一近邻样本的局部前k近邻集,用近邻集的均值和标准差进行数据标准化,最后使用主多项式分析(PPA)对标准化处理后的数据建模,计算T2和SPE统计量,并确定控制限进行故障检测。主多项式分析使用一组灵活的主多项式分量来描述数据能够有效地捕捉过程数据中潜在的非线性结构,ILNS方法能够将多模态数据融合为单模态数据,消除过程数据的多模态特征使PPA算法的建模更加精确。最后通过多模态非线性数值例子和田纳西伊斯曼(TE)化工过程数据实验进行仿真验证,并与传统的主元分析法(Principal Component Analysis, PCA)、主多项式分析法(PPA)进行对比,验证了ILNS-PPA方法的有效性及优越性。
- 单位