摘要
回环检测能够消除视觉SLAM的累积误差,对SLAM系统意义重大。其中,应用较广泛的视觉词袋模型算法存在着视觉单词同一性和歧义性问题,影响了回环检测效果。为改善这些问题并提高回环检测效果,提出了一种基于软分配SIFT(scale-invariant feature transform)特征的回环检测算法。该算法将图像提取出的SIFT特征点分配到欧氏距离最近的几个单词上,并根据距离排序加权,剔除距离单词较远的特征点,生成更具区分性的描述子,并且在筛选候选项时,加入相同单词特征点占比以及单词偏移稳定性约束,筛选出少量候选项。实验结果中,该算法相较于传统视觉词袋模型以及近些年的几种回环检测算法,在三种数据集中的100%准确率下的召回率有所提升,图像平均查询时间在40 ms左右。结果表明,该算法对回环检测效果有一定提升,并且保证了实时性。
- 单位