摘要
为提高光伏发电系统输出功率的预测精度,提出基于改进相似日和蜜獾算法(HBA)优化改进双向长短期记忆神经网络(BiLSTM)与核极限学习机(KELM)的光伏发电预测方法。首先,使用CRITIC权重法动态计算各气象因素对光伏发电功率的影响权重,通过逐时刻计算历史日和待预测日的加权欧氏距离确定相似日。其次,使用HBA优化BiLSTM和KELM模型参数,然后使用HBA参数优化后的BiLSTM进行功率预测,优化后的KELM进行误差优化预测。最后将初步预测功率和误差预测功率相加得到最终预测功率。仿真结果表明:该模型平均绝对百分比误差为0.91%,具有较高的光伏系统输出功率预测精度。
- 单位