摘要
受采集环境和经济因素的影响,地震数据在空间上往往存在道缺失的现象,严重影响后续资料解释的准确性。缺失的地震道破坏了完整数据的低秩性,因此,地震数据重建问题可以转化为秩最小化问题。核范数最小化(nuclear norm minimization, NNM)是经典的基于低秩约束的地震数据重建方法。但是,NNM是秩最小化的凸松弛,得到的只是原始秩最小化问题的次优解。基于log-sum函数(log-sum majorization minimization, LSMM)的方法使用非凸的log-sum函数代替秩函数用于地震数据重建,精度较高,但时间消耗较大。基于此,本文提出高效的非凸重建模型:基于非凸Geman函数的地震数据重建方法(nonconvex Geman low rank, NCGL),利用更近似秩函数的Geman函数代替核范数。根据Karush–Kuhn–Tucker(KKT)条件理论求解非凸问题,无需引入正则化参数。仿真与真实实验结果表明,非凸NCGL方法重建精度显著高于基于核范数最小化的奇异值阈值方法(singular value thresholding, SVT)和基于数据阈值驱动的凸集投影方法(projection onto convex sets, POCS),且NCGL方法具有较快的收敛速度,重建效率显著高于SVT和LSMM方法。
- 单位