摘要

准确预测能源消费及碳排放量对于科学有序落实我国“2030年前碳达峰,2060年前碳中和”目标有重要现实意义.提出了一种融合位置扰动和模拟退火的改进粒子群算法(IPSO)优化基于两层“分解-集成”策略的预测方法:首先利用趋势分解(TD)将原始能源消费时序分解成趋势项和非趋势项,继而使用经验模态分解(EMD)将非趋势项分解成若干本征模态函数(IMFs)和一个残差项,然后对上述趋势项、 IMFs和残差项分别建模预测,利用IPSO优化多元线性回归模型(MLR)预测趋势项,采用长短期记忆神经网络(LSTM)预测非趋势项的本征模态函数IMFs和残差子序列,最后通过相加集成求取最终能源消费预测值.实证分析表明,基于TD-EMD两层“分解-集成”策略的IPSO-MLR-LSTM模型融合了TD、 EMD、 IPSO和LSTM的优点,更全面地捕捉了趋势项和非趋势项演化规律,提升了预测性能,将其应用于能源消费领域是可行且有效的.最后,预测了在不同能源消费结构、经济增长、人口数量、能源效率和人均生活能源消费水平情景下的我国2021~2035年能源消费和碳排放量,并给出相关政策建议.

全文