摘要

自然场景下的行人属性识别是一个具有挑战性的研究课题,存在行人属性类别多样、行人视角和分辨率多样、样本不平衡等诸多难点,致使难以有效建模。为克服上述难点,提出基于多任务压缩激发(squeeze-and-excitation,SE)网络的行人属性识别方法,通过多任务卷积神经网络、联合压缩激发模块与残差模块、焦点损失函数三方面改进,研究了自然场景下行人属性识别效果提升的不同方式。结果表明,研究结果相比基线模型在Market-1501数据集和Duke MTMC-re ID数据集上的准确率和效率均有提升,研究结果具有普遍有效性。