摘要

采用基于机器视觉的无接触检测方式对飞机制造中蒙皮、机翼缘条以及角片等薄壁零件表面缺陷进行自动检测,使用VMS-4030G影像仪采集零件表面信息,提出多特征联合检测方法检测缺陷。该方法主要包括图像Tamura纹理特征提取、图像局部二值模式(LBP)直方图和LBP下的灰度梯度共生矩阵特征(GGCM)提取。根据缺陷特性选择提取特征,对得到的特征应用主成分分析法(PCA)进行降维以及支持向量机(SVM)分类,最终得到检测结果。为了验证所提方法可行性,以带铆接孔的6061铝合金板代替飞机薄壁零件进行数据采集和检测。试验结果表明,该检测方法对毛刺、裂纹、凹陷及划痕的检测率均大于92%,明显优于单一特征提取的检测方法。