摘要
使用传统协同过滤的方式进行推荐往往会忽视音乐底层特征.通过将音乐的音频特征与歌词信息进行多模态融合,并将融合后的特征信息作为协同过滤推荐的补充,提出了一种基于多模态的音乐推荐系统.主要探讨了音频特征与歌词信息的提取,并在提取歌词信息时利用LDA主题模型进行特征降维.针对多模态融合问题,使用一种特征级联早融合法(EFFC)融合方式,并将多模态融合后的结果与单模态结果进行了比较.对于结果的推荐,以多模态特征信息为依据建立用户兴趣模型,并将该模型通过LSTM神经网络,以过滤与优化协同推荐的用户组.结果表明,基于多模态的音乐推荐系统将推荐结果的误差项平方和(SSE)由传统的2. 009降至0. 388 6,验证了该方法的有效性.
-
单位通信与信息工程学院; 南京邮电大学