摘要

人群数量估计是人群管理系统的关键,对于预防踩踏事故和引导人群至关重要,已成为一个日益重要的任务和具有挑战性的研究方向。本文提出一种数据相关的拆分注意力机制的编码器-解码器结构的人群计数方法,称为DNe StCount。为应对视频监控的尺度变化和透视失真的挑战,将更密集的空洞采样比率应用到密集空洞空间金字塔池化模块DASPP设计中。为提升密度图估计的准确性,将可学习的、数据相关的上采样方法 DUpsampling应用到特征聚合模块DFA设计中。为弥补欧几里德损失可能存在对离群值敏感、训练不稳定等缺点,采用Smooth L1损失设计损失函数。在具有挑战性的数据集上进行的实验和分析表明,本文提出的人群计数方法 DNe St Count与其他主流方法相比更具有竞争力。