摘要
The re moval efficiency of pollutants in Fe(O) electrocoagulation(EC) has been associated closely with the speciation of generated Fe(Ⅱ)/Fe(Ⅲ) oxides during this process,which is very complicated and can be affected by various factors.In this work,in-situ Raman,X-ray diffraction and some other techniques have been used to study the speciation of Fe under different conditions and to establish a relationship between Fe speciation and Sb(V) removal efficiency.Results indicated that concentration of dissolved oxygen(DO)is a key factor influencing Fe(O) EC.It was found that green rusts(GRs) were formed and were then transformed into magnetite at lower DO concentration,and Sb(V) removal efficiency reached 99.9% after30 min of EC.In contrast,γ-FeOOH was formed at high DO concentration,and the removal efficiency of Sb(V) after 30 min of EC was only 72.8%.In the presence of sulfite and phosphate with low concentrations,GRs can be stabilized and benefit the removal of Sb(V).We believe this work will provide some new insights on the mechanism of Fe(O) EC and the effective removal of other pollutants during Fe(O)EC process.
- 单位