基于联合GLMB滤波器的可分辨群目标跟踪

作者:齐美彬; 庄硕; 胡晶晶; 杨艳芳; 胡元奎
来源:系统工程与电子技术, 2024, 46(04): 1212-1219.
DOI:10.12305/j.issn.1001-506X.2024.04.09

摘要

针对联合广义标签多伯努利(joint generalized labeled multi-Bernoulli, J-GLMB)滤波算法中群目标之间距离较近、容易关联错误的问题,结合超图匹配(hypergraph matching, HGM)提出一种基于HGM-J-GLMB滤波器的可分辨群目标跟踪算法。首先,采用J-GLMB滤波器估计群内各目标的状态、数目及轨迹信息,并利用HGM结果提升量测与预测状态之间的关联性能。其次,通过图理论计算邻接矩阵,获取群结构信息和子群数目。随后,利用群结构信息估计协作噪声,进而校正目标的预测状态。最后,通过平滑算法改善滤波效果,并设置轨迹长度阈值,使其在平滑状态达到消除短轨迹的目的。仿真实验表明,所提算法在线性系统下能有效提升群目标跟踪性能。

全文