摘要

提出了基于学习的多宇宙并行免疫量子进化算法,算法中将种群分成若干个独立的子群体,称为宇宙。宇宙内采用免疫量子进化算法,宇宙间采用基于学习机制的移民、模拟量子纠缠的种群交叉等信息交互方式,使得进化算法具有更好的种群多样性,更快的收敛速度和全局寻优能力。不仅从理论上证明了该算法的收敛,而且通过仿真实验表明了该算法的优越性。