摘要

针对传统数字岩心重构技术存在的成本高昂、复用性差和重构质量低等问题,提出了一种基于带梯度惩罚深度卷积生成对抗网络(DCGAN-GP)的三维页岩数字岩心重构方法。首先,利用神经网络参数来描述页岩训练图像的分布概率,并完成训练图像的特征提取;其次,保存训练后的网络参数;最后,利用生成器重构出页岩三维数字岩心。实验结果表明,相较于经典的数字岩心重构技术得到的图像,DCGAN-GP得到的图像在孔隙度、变差函数和孔隙大小及分布特征上都更接近训练图像,而且DCGAN-GP的CPU使用率不到经典算法的一半,内存峰值仅有7.1 GB,重构时间达到了每次42 s,体现出模型重构质量高、效率高的特点。